direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Verursacht der Valentinstag Feinstaubalarm?

Freitag, 29. März 2019

Medieninformation Nr. 53/2019

Wissenschaftler*innen des Berliner Big Data Centers analysieren Daten von Berliner Feinstaubsensoren

Ein Team aus Forscher*innen der TU Berlin und des Deutschen Forschungszentrums für Künstliche Intelligenz, die an dem Berliner Big Data Center (BBDC) kooperieren, hat sich für einen wissenschaftlichen Wettbewerb intensiv mit Feinstaub-Emissionsdaten aus ganz Berlin beschäftigt. „Dazu haben wir die Daten von rund 380 Feinstaubsensoren analysiert. Uns hat dabei vor allem interessiert, ob wir durch die sinnvolle Kombination dieser Daten mit weiteren externen Daten – wie zum Beispiel Wetterdaten, Verkehrsdaten oder Eventdaten – ein funktionierendes, automatisches System aufbauen können, dass Einblicke in die Zusammenhänge bei der Entstehung von Feinstaub in Berlin ermöglicht“, so Mahdi Esmailoghli, Doktorand von Prof. Dr. Ziawasch Abedjan an der TU Berlin.

Nur wenn der Zusammenhang zwischen solchen Daten und der Feinstaubbelastung geklärt ist, lassen sich überhaupt wirksame Maßnahmen zur Verringerung des Feinstaubs entwickeln. Gesammelt und bereitgestellt wurden die Daten von Freiwilligen eines Citizen Science-Projektes (https://luftdaten.info/de/home-de). „So konnten wir zum Beispiel zeigen, dass der Anstieg von Feinstaub in bestimmten Regionen und zu bestimmten Zeiten exakt mit den Landeanflügen in Berlin Tegel korrespondiert“, so Ziawasch Abedjan: „Wobei eine zeitliche Korrelation natürlich nicht immer eine kausale Beziehung beschreibt. Wir fanden zum Beispiel auch einen deutlichen Anstieg der Feinstaubbelastung am Abend des Valentinstages – und zwar jedes Jahr, in jeder deutschen Großstadt. Trotzdem kann man daraus nicht den Schluss ziehen, dass viele Verliebte in einer Stadt ein Risiko für die Feinstaubbelastung sind.“ Um echte Kausalitäten festzustellen, müssten jetzt Expert*innen aus unterschiedlichen Disziplinen die datengetriebenen Ergebnisse analysieren.

Alle zwei Jahre schreibt die Gesellschaft für Informatik auf dem Symposium „Database Systems for Business, Technology, and Web” eine sogenannte „DataScience Challenge“ aus. Thema des diesjährigen Wettbewerbs war die Luftqualität in ganz Deutschland. Das BBDC-Team aus Mahdi Esmailoghli, Sergey Redyuk, Ricardo Martinez, Ariane Ziehn, Prof. Dr. Ziawasch Abedjan, Prof. Dr. Tilmann Rabl und Prof. Dr. Volker Markl wurde mit dem ersten Platz ausgezeichnet.

Ein weiterer Forscher des BBDCs, Jonas Traub, wissenschaftlicher Mitarbeiter von Prof. Dr. Volker Markl am Fachgebiet Datenbanksysteme und Informationsmanagement der TU Berlin, erhielt den Best Paper Award 2019 der “International Conference on Extending Database Technology”. Die Konferenz zu Datenbanken und Informationsmanagement gilt weltweit als eine der renommiertesten. Jedes Jahr zeichnet ein international besetztes Komitee die beste wissenschaftliche Arbeit im Bereich der Grundlagenforschung aus.

„Ausgangspunkt des prämierten Papers ist die Anforderung sehr vieler Systeme – wie zum Beispiel autonomer Fahrzeuge oder auch in der Industrie 4.0 – kontinuierlich sehr viele Daten, in sehr kurzer Zeit, mit geringer Latenz zu verarbeiten“, erklärt Jonas Traub. Das Problem: In solchen Systemen können neue Daten nicht erst gespeichert, strukturiert und später ausgewertet werden, sondern müssen sofort nach ihrer Entstehung – also zum Beispiel direkt bei der Erfassung an einem Sensor – zu einer entsprechenden Reaktion des Systems führen. Ein möglicher Anwendungsfall wäre ein Maschinenfehler in einem laufenden Produktionsprozess, der umgehend ein Warnsystem auslösen muss. „In dem Paper stellen wir ein generelles System zur Aggregation von Daten vor, dass es ermöglicht, den Datendurchsatz im Vergleich zu alternativen Techniken zu verzehnfachen“, so Jonas Traub. So können nicht nur Rechner-Ressourcen gespart werden, sondern es werden auch ganz neue Anwendungen ermöglicht.

„Das BBDC macht genau diese erfolgreiche interdisziplinäre Forschung überhaupt erst möglich“, freut sich Prof. Dr. Volker Markl, Direktor des BBDCs, über den Erfolg aller Beteiligten. Um die technischen Grundlagen für Anwendungen der künstlichen Intelligenz zu schaffen, kooperiert das BBDC mit internationalen Spitzerforschern in Europa, USA und Asien. „Diese enge Kooperation ermöglicht allen Beteiligten, Wissenschaft auf internationalem Niveau zu betreiben“, berichtet Volker Markl. „Skalierbare Datenanalysen sowie maschinelles Lernen auf verteilten Daten und Datenströmen sind Kernthemen des BBDCs. Sie spielen eine entscheidende Rolle bei der Entwicklung des Internet der Dinge, bei der Steuerung von autonomen Fahrzeugen, bei der Verwaltung intelligenter Stromnetze oder der Massenindividualisierung von Produktion im Rahmen von Industrie 4.0“, so Volker Markl.

kj

Weitere Informationen erteilen Ihnen gern:

Prof. Dr. Volker Markl
TU Berlin
Fachgebiet Datenbanksysteme und Informationsmanagement (DIMA)
Tel.: 030/314-23555

Prof. Dr. Ziawasch Abedjan
TU Berlin
Fachgebiet Big Data Management (BigDaMa)
Tel.: 030/314-28007

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.