direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

EIN-Blick für Journalisten

Dreidimensionale Bilder von Neuronen

Montag, 12. November 2007

Wissenschaftler am Bernstein-Zentrum Berlin rekonstruieren dreidimensionale Struktur von Nervenzellen

Milliarden von Nervenzellen, die über mehrere Billionen Kontakte miteinander kommunizieren - das ist das menschliche Gehirn. Über hochverzweigte Dendriten erhalten die Nervenzellen Signale und leiten diese über ihre langen Fortsätze, die Axone, weiter - über insgesamt etwa eine Millionen Kilometer neuronaler "Leitungen" verfügt das Gehirn. Um zu verstehen, wie das Gehirn funktioniert, warum wir denken und fühlen können, ist eine Analyse der Struktur dieses Netzwerks und seiner einzelnen Bestandteile unerlässlich. Dabei kommt es nicht nur darauf an, welche Neurone miteinander in Kontakt stehen - auch die Wege, die Signale innerhalb eines Neurons nehmen, wirken sich auf den Informationsfluss aus. Die Geschwindigkeit und somit auch die Verrechnung der Signale hängen von der Länge und Dicke sowie der Verzweigungsstruktur der Dendriten ab.

In einem Kooperationsprojekt wurde nun ein Verfahren entwickelt, mit dem sich die verzweigte Struktur der Nervenzellen aus Mikroskopiedaten sehr exakt und mit relativ wenig Aufwand rekonstruieren lässt. Eine Arbeitsgruppe leitete Prof. Dr. Klaus Obermayer vom Institut für Softwaretechnik und Theoretische Informatik der TU Berlin; der zweiten Gruppe gehörte Dr. Carsten Duch unter der Leitung von Prof. Dr. Hans-Joachim Pflüger von der FU Berlin an.

Um die Struktur der Zellen in einem Gewebe zu untersuchen, müssen diese mit Fluoreszenzfarbstoffen angefärbt und im Mikroskop Ebene für Ebene abgetastet werden. Aus hunderten von aufeinander folgenden Schichtaufnahmen kann dann der Forscher ein dreidimensionales Modell einzelner Neurone rekonstruieren. Da die Dendriten der Neurone kreuz und quer durch die Schichten verlaufen, ist das ein sehr mühsames Verfahren. Bisherige Ansätze, diese zeitraubende und schwierige Aufgabe zu automatisieren, haben einen gravierenden Nachteil: Der Anwender verliert die Kontrolle über das, was die Maschine tut. Jede Färbung hat ein Hintergrundrauschen - unspezifische Fluoreszenzfärbung außerhalb des gefärbten Neurons. Zu "entscheiden", welche Fluoreszenz dem Neuron zuzuschreiben ist und welche nicht, ist für ein Softwareprogramm zur Neuronrekonstruktion nicht so ohne weiteres möglich. Mit jeder Automatisierung des Verfahrens sinkt daher die Akkuratheit der Rekonstruktion.

Auf dem schmalen Grat zwischen Arbeitsaufwand und Fehlerträchtigkeit haben Dipl.-Inf. Stephan Schmitt und Dr. Jan-Felix Evers unter Projektleitung von Dr. Michael Sibila und Prof. Dr. Klaus Obermayer nun ein halbautomatisiertes Verfahren entwickelt, mit dem die dreidimensionale Struktur von Neuronen in relativ kurzer Zeit exakt rekonstruiert werden kann. Mit Hilfe modernster Bildverarbeitungsmethoden und fortgeschrittener Software erlaubt das Verfahren, ein komplexes Neuron in nur wenigen Stunden zu rekonstruieren - mit klassischen Methoden dauerte so etwas einen ganzen Arbeitstag.

Bei dem halbautomatischen Verfahren werden vom Anwender die End- und Verzweigungspunkte der Dendriten markiert. Dazu wird auch festgelegt, welche der markierten Punkte direkt durch ein dendritisches Segment miteinander verbunden sind. Von der Software wird anhand der Initialisierung und der Bilddaten sowohl der Verlauf als auch die Oberfläche der einzelnen Dendriten exakt rekonstruiert. Der Anwender kann das Resultat manuell nachbessern, um einzelne Rekonstruktionsfehler zu beseitigen.

Die Forschungsgruppe von Klaus Obermayer hat mit der neuen Methode bereits eine Reihe von Neuronen aus den Nervensystemen verschiedener Tiere rekonstruiert. Mit Hilfe von Computersimulationen können sie ihre Modelle nutzen, um die elektrophysiologische Funktionsweise des Neurons nachzubauen und so etwas über die Informationsverarbeitung in Nervenzellen zu lernen. Auch wie die verästelte Struktur der Neurone während der Entwicklung des Nervensystems entsteht, und welche Mechanismen das Auswachsen von Axonen und Dendriten steuern, lässt sich anhand dreidimensionaler Modelle rekonstruierter Neurone untersuchen.

ko / 3954 Zeichen

Kontakt zum Wissenschaftler

Prof. Dr. Klaus Obermayer
Institut für Softwaretechnik und Theoretische Informatik
Fachgebiet Neuronale Informationsverarbeitung
Franklinstr. 28/29
10587 Berlin
Tel.: 030/314-73120/-73442
Fax: 030/314-73121

ni.cs.tu-berlin.de/index.deutsch.html

Expertendienst: Neuronale Informationsverarbeitung

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.

Fotos zum Download

3D Rekonstruktionen von Neuronen3D Rekonstruktionen von Neuronen3D Rekonstruktionen von Neuronen
zur Fotogalerie