direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

There is no English translation for this web page.

Forschung

Energie und Medizin aus Sonne und Pflanzen

Dienstag, 17. Juni 2008

Wie die Forschung im Exzellenzcluster "UniCat" unsere Zukunft sichern kann

Strom aus Wasserstoff und Sauerstoff
Mit Strom aus Wasserstoff und Sauerstoff startete Annemarie Waits aus Oxford die Uhr und gab damit den Startschuss für "UniCat"
Lupe

Das Ozonloch wird immer größer. Weil wir zu viel CO2 produzieren, wandelt sich das Klima und wird der Menschheit Naturkatastrophen unvorhersagbaren Ausmaßes bescheren. Unsere fossilen Energieressourcen, insbesondere Rohöl, neigen sich absehbar dem Ende zu. Verheerende Krankheiten wie Aids bedrohen ganze Kontinente, gleichzeitig werden unsere schärfsten Waffen, die Antibiotika, durch zunehmende Resistenzen stumpf. Lösungen für diese drängenden Menschheitsprobleme zu finden, dieses hohe Ziel haben sich die Katalyseforscherinnen und -forscher aus verschiedenen Disziplinen, die im Exzellenzcluster "Unifying Concepts in Catalysis", kurz "UniCat", zusammengekommen sind, auf die Fahnen geschrieben (s. auch Bericht TU intern  6/08).

Es geht unter anderem darum, neue Produkte zu generieren, und zwar aus Grundstoffen, die in der Natur bereits vorhanden sind. Ohne Hilfe finden sie jedoch nicht zusammen beziehungsweise es dauert sehr lange, manchmal Jahrmillionen: zu lange für die Menschheit. Ein Vermittler fehlt, der den Vorgang beschleunigt - wie der Tanzlehrer, der in der Tanzstunde zu schüchterne Partner zusammenführt und sich nach getaner Arbeit wieder zurückzieht. Diese Aufgabe übernehmen die Katalysatoren. Sie beschleunigen Reaktionen. Die Arbeitsgruppe von Prof. Dr. Roderich Süßmuth von der TU Berlin versucht beispielsweise die Wirksamkeit von Naturstoffen mit antibiotischer Wirkung zu verstehen. Wie kommt es zu ihrer antibakteriellen, antiviralen oder Antitumorwirkung? Herausgefunden hat man mittlerweile, dass es die Stoffwechselprodukte bestimmter Pilze und Bakterien sind, die diese für Mensch, Tier und Pflanze segensreiche Wirkung entfalten. Inzwischen hat die Gruppe bereits ein Mittel gegen den Feuerbrand entwickelt, eine Baumkrankheit, die ganze Obstbaumplantagen in Deutschland und in Übersee bedroht.

In der Arbeitsgruppe von Prof. Reinhard Schomäcker versucht man gemeinsam mit Kollegen vom Fritz-Haber-Institut Methan in chemisch wertvollere, flüssige Stoffe umzuwandeln, zum Beispiel in Ethylen. Das könnte verhindern, dass das wertvolle Erdgas bei der Rohölgewinnung unter Freisetzung riesiger Mengen von CO2 einfach abgefackelt wird, wie es derzeit geschieht, nur weil es in gasförmigem Zustand nicht transportiert werden kann. Das Ethylen ist zudem kostbarer Ausgangsstoff für die Industrie zur Herstellung der verschiedensten Stoffe wie Folien und Verpackungen. Doch Reaktionen, die im Labor funktionieren, müssen im Großmaßstab nicht genauso ausgehen. Um dies überprüfen zu können, bauen die am Cluster beteiligten Ingenieure auf dem Campus der TU Berlin eine sogenannte Miniplant-Anlage, die die Ausmaße eines mehrstöckigen Gebäudes hat. Sie bildet den Übergang von einem chemischen Experiment im Labor zu Reaktoren, wie sie in der Industrie eingesetzt werden.
Biokatalysatoren, das heißt Enzyme, wie sie unter anderem auch bei der Fotosynthese der Pflanzen eine wichtige Rolle spielen, untersucht die Arbeitsgruppe von Prof. Dr. Peter Hildebrandt. Mithilfe von Laserlicht wird das katalytische Zentrum der Enzyme vermessen und so indirekt betrachtet. Besonders interessant ist dabei das Enzym Hydrogenase, das von der Arbeitsgruppe von Prof. Dr. Bärbel Friedrich und Dr. Oliver Lenz an der HU Berlin isoliert wird. Mit ihm wollen die Berliner Forschungsgruppen in Kooperation mit der Arbeitsgruppe von Prof. Dr. Fraser Armstrong and Dr. Kylie Vincent von der Universität Oxford beispielsweise Strom aus Wasserstoff gewinnen. Das besonders Reizvolle: Als Abfallprodukt entsteht lediglich Wasser, statt wie bei der derzeitigen Stromgewinnung tonnenweise das klimaschädliche CO2. Und auch hier ist der erste Schritt bereits getan. Eine Deutschlandpremiere führte Annemarie Waits, beteiligte Wissenschaftlerin aus Oxford, auf der "UniCat"-Eröffnungsveranstaltung vor: Sie bewies, wie eine biologische Mini-Brennstoffzelle, die zudem noch preiswerte Grafitelektroden statt des üblichen teuren Platins benutzen kann, aus Wasserstoff und Sauerstoff Strom produzieren kann. Die als Katalysator eingesetzte Hydrogenase auf der Grafitanode initiierte dabei die Wasserstoffspaltung, während ein Laccase-Enzym an der Grafitkathode die Reduktion von Sauerstoff steuert. Das begeisterte Auditorium wurde Zeuge, wie die Wissenschaftlerin eine Uhr an die Mini-Brennstoffzelle anschloss, die sofort aufleuchtete und zu ticken begann, der Start von "UniCat".

Patricia Pätzold / Quelle: "TU intern", 6/2008

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.